Преимплантационный генетический анализ эмбрионов

Количество хромосом у человека

О том, сколько хромосом содержится в клетке организма человека, известно со школьного курса биологии. Набор всех хромосом называется кариотипом. Он является видоспецифичным признаком – одинаков для всех отдельно взятых представителей рода живых существ. Так, в клетке человека содержится 23 пары хромосом, 22 из которых – аутосомы, а 1 пара – половые хромосомы (XX у женщин, XY – у мужчин).

Изменение общего количества хромосом в организме ведет к необратимым последствиям. В результате наблюдается развитие генных заболеваний, которые могут приводить к врожденным аномалиям развития и даже к гибели плода еще на внутриутробном этапе развития. Врачи стараются выявить возможные нарушения на ранних этапах, чтобы исключить появление на свет малышей с генными болезнями.

Количество хромосом в соматических клетках человека

Для начала необходимо определить, что означает термин «соматическая клетка». Этим понятием обозначают любые клетки человеческого организма, которые не относятся к половым. Они определяют основные параметры человеческого организма, такие как:

  • рост;
  • телосложение;
  • цвет волос;
  • цвет глаз.

Каждая соматическая клетка имеет в своем составе 22 пары хромосом, которые являются диплоидными (двойными). В результате несложных подсчетов можно установить, что всего в такой клетке 44 хромосомы (диплоидный набор). В результате развития генных мутаций общее количество хромосом в соматических клетках может увеличиваться или уменьшаться, что приводит к развитию хромосомного заболевания.

Количество хромосом в половых клетках человека

Половые хромосомы мужчины и женщины имеют отличия. У женщин это ХХ-хромосомы, а у представителей мужского пола – XY. Исследования генетиков показали, что Y-хромосома отличается отсутствием некоторых аллелей (к примеру, аллеля, отвечающего за свертываемость крови). Все половые клетки имеют гаплоидный набор.

Это означает, что каждая такая клетка содержит только 23 гаплоидные хромосомы (1n). В процессе слияния мужской и женской половых клеток образуется полный диплоидный набор. Это означает, что от каждого родителя будущий плод наследует по 23 хромосомы, которые вместе образуют затем диплоидный набор, необходимый для нормального образования зиготы.

Количество хромосом у мужчин и женщин

Даже знающие сколько хромосом у человека в организме содержится, думают, что между женским и мужским полом в этом плане имеются различия. Мужской и женский организмы содержат практически одинаковый набор хромосом, за небольшим исключением. Так, в клетках женского организма содержатся 23 одинаковые пары хромосом.

Все половые клетки содержат обе Х-хромосомы. У мужчин же 22 пары ХХ, а 23 – ХY. Непосредственно половые хромосомы обеспечивают различие в составе. В общем же количество хромосом у представителей обоих полов одинаковое – 46. Изменение этого количества является следствием мутации, которая приводит к развитию болезни.

Почему количество хромосом в клетке постоянно?

Число хромосом в клетке является определяющим фактором. Непосредственно от их количества зависит принадлежность живого организма к тому или иному виду. Известный факт, что дерево не может превратиться в овощ, овощ – в рыбу, а рыба – в гриб. Это невозможно благодаря тому, что все клетки организма на протяжении жизни организма имеют постоянный состав и неизменный набор хромосом.

Однако в отдельных случаях в составе половых клеток возможны изменения. Если хромосомы, в них содержащиеся, мутируют, наблюдаются проблемы с зачатием. В случае если оно происходит, плод с большой долей вероятности будет иметь врожденные аномалии развития или окажется нежизнеспособным и погибнет на одном из этапов своего развития. Зная сколько хромосом у здорового человека, генетики могут определить патологию путем анализа образца генетического материала.

История открытия хромосом

Классическая биология подразумевает, что открытие хромосомы неразрывно связано с открытиями клетки и ядра. Все находки стали возможными только после изобретения микроскопа Левенгуком в 1674 году.

В 1831 году Роберт Браун первым определил, что в клетках растений есть клеточное ядро. Он опубликовал множество научных трудов по этому вопросу.

В 1838 М. Дж. Шлейдена выдвинул неверную эпигенетическую теорию. Она утверждает, что клеточное ядро создается из жидкости клетки. Это послужило классической противоположностью открытию Эдуарда ван Бенедена в 1883 году, что нитевидные молекулы – это отдельные объекты.

В 1842 году Карл Вильгельм фон Нагели обнаружил субклеточные структуры. Он наблюдал «идиоплазму», сеть струноподобных тел. Ученый ошибочно предполагал, что они образуют взаимосвязанную сеть во всем организме.

В 1873 году Шнайдер описал косвенное деление ядра с помощью «Kernfigur» (ядерная фигура) и «ахроматического веретена». В 1883 году Эдуард ван Бенеден обнаружил, что после оплодотворения половых клеток нематоды Ascaris megalocephala не сливаются с нитевидными молекулами ядра ооцита. Следовательно, они являются отдельными сущностями.

Правила Менделя были основаны на суждениях Бенедена, но эта связь была обнаружена только через несколько лет.

Определение «хромосома» было придумано Уолдиером в 1888 году. Термин происходит от греческих слов «цвет» и «тело». Термин имеет такое название, потому что хромосома обладает способностью окрашиваться красителями.

А уже в 1960 году была создана первая Денверская международная классификация, которая помогает в построении кариограммы человека — совокупности всех хромосом диплоидного набора клетки.

Генетические нарушения в половых хромосомах

Гетерогаметные индивидуумы более восприимчивы к генетическим нарушениям, связанным с половой хромосомой, потому что они получают только одну копию каждого гена. Например, если мать является носителем рецессивного генетического заболевания, у нее есть 50-процентная вероятность передачи заболевания своему ребенку мужского пола, в зависимости от того, аллель попадает в яйцо С другой стороны, ни одна из ее дочерей, вероятно, не пострадает, потому что они унаследуют еще одну Х-хромосому от своего отца, у которого будет нормальный аллель.

Одно важное историческое событие было вызвано генетическим заболеванием, связанным с Х Гемофилия Алексея Николаевича, сына последнего царя России, была унаследована от его матери. Первоначальная мутация возникла в королеве Виктории и, благодаря ее дочерям, распространилась на многие королевские семьи в Европе

Считается, что болезнь Алексея способствовала падению русской монархии.

На этом изображении носители окрашены в розовый цвет, а больные гемофилией окрашены в красный цвет. Это показывает передачу аллеля гемофилии от королевы Виктории одному сыну и двум дочерям. После этого три внука и четыре внучки унаследовали аллель. В результате брака больной аллель был передан королевским семьям в Германии, Испании и России.

Другие Х-связанные расстройства включают дальтонизм, который наблюдается гораздо чаще у мужчин. Кроме того, любые мутации в Y-хромосоме также наследуются мужским потомством без какой-либо вероятности рекомбинации или изменения. Y-сцепленное наследование связано со снижением фертильности и облысения.

С другой стороны, Х-сцепленные доминантные расстройства влияют на мужское и женское потомство. Мать, у которой доминантное расстройство, связанное с Х, может передать свою болезнь пятидесяти процентам своих дочерей и пятидесяти процентам своих сыновей. Отец передаст его состояние всем его дочерям и ни одному из его сыновей. Тем не менее, это редкие события, потому что наличие доминирующих генетических аномалий значительно снижает репродуктивные возможности.

Изредка нерасхождения Событие во время мейоза приводит к анеуплоидии – оплодотворенная яйцеклетка имеет неправильный набор хромосом, причем некоторые из них присутствуют в нескольких копиях или вообще отсутствуют. Когда это происходит с половыми хромосомами, это может привести к людям с необычным набором X и Y хромосом. Например, у некоторых женщин есть три Х-хромосомы, и это условие обычно обнаруживается, когда есть другие симптомы, такие как плохое мускул тон или трудности в обучении. С другой стороны, женщины с одной Х-хромосомой имеют синдром Тернера и страдают от ряда физических, репродуктивных и неврологических нарушений. Мужчины Klinefelter – люди с двумя X и одной Y-хромосомой. Это одна из наиболее распространенных анеуплоидий половых хромосом у людей с рядом тонких и грубых симптомов. Мужчины часто бесплодны, выше среднего, но имеют плохой мышечный тонус и координацию. С другой стороны, мужчины, у которых есть лишняя Y-хромосома, имеют увеличенный рост, но других симптомов нет.

Большинство случаев анеуплоидии половых хромосом обнаруживаются, когда у людей проявляются неврологические симптомы, трудности в обучении или бесплодие.

  • Аутосомы – Хромосомы, которые не участвуют в определении пола.
  • раздельнополый – содержащие мужские и женские половые органы у разных лиц; обычно используется для обозначения растений и некоторых беспозвоночный животные.
  • Нерасхождения – отказ одной или нескольких пар гомологичные хромосомы или сестринские хроматиды отделиться во время мейоза, приводящего к анеуплоидии.
  • Партеногенез – Процесс бесполое размножение на некоторых растениях беспозвоночные и рептилии, где яйцеклетка может производить потомство без оплодотворения.
  • полиплоидия – Наличие более двух полных наборов хромосом в клетка,

Хромосома это кратко. Хромосомы

chromosome) — нитевидная структура клеточного ядра, несущая генетическую информацию в виде генов, которая становится видной при делении клетки. Хромосома состоит из двух длинных полинуклеатидных цепей, образующих молекулу ДНК. Цепи спирально закручены одна вокруг другой. ДНК соединена с белкамигистонами. Вдоль всей длины молекулы ДНК линейно располагаются гены. Хромосомы хорошо окрашиваются основными красителя ми в процессе деления клетки (см. Мейоз, Митоз). В ядре каждой соматической клетки человека содержится 46 хромосом, 23 из которых являются материнскими, а 23 — отцовскими. Каждая хромосома может воспроизводить свою точную копию в промежутках между клеточными делениями (см. Интерфаза), так что каждая новая образующаяся клетка получает полный набор хромосом. См. также Хроматида, Центромера, Половая хромосома. — Хромосомный (chromosomal).

Хромосомы

Структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. В каждой клетке человека присутствует 46 хромосом, разделенных на 23 пары, из которых 22 являются аутосомами, а 23-я пара состоит из X- или У-хромосом, определяющих пол человека. Во время оплодотворения, когда мужские хромосомы в сперме соединяются с женскими хромосомами в яйцеклетке, сочетание XX определяет женский пол, а ХУ — мужской пол.

Микроскопическое тело в ядре клетки, которое становится заметным во время деления. Этот термин буквально означает окрашенное тело, и хромосомы были так названы, поскольку они глубоко окрашиваются основными красителями. Хромосомы содержат в себе гены, основные единицы наследственности. Каждый биологический вид имеет постоянное нормальное число хромосом. Так, в соматических клетках человека их 46, образующих 23 пары; яйцеклетка и сперматозоид содержат по 23 хромосомы, по одной из каждой пары. Из этих 23, 22 – аутосомы, и 1 – половая хромосома (или X или Y). При оплодотворении 23 хромосомы мужчины объединяются с 23 хромосомами женщины. Х-хромосомы – женские, Y – мужские. Нормальные женские соматические клетки имеют хромосомный набор – XX, нормальные мужские – XY; нормальная женская яйцеклетка с Х-хромосомой, нормальный мужской сперматозоид – с X или Y XX – эмбрион будет женского пола; XY – мужского.

ХРОМОСОМЫ

см. хромо- + греч. soma — тело> — биол. органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов. Х. способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют ее в ряде поколений. Каждый вид организмов обладает характерным и постоянным набором хромосом в клетке, закрепленном в эволюции данного вида, а его изменения происходят только в результате мутаций. Термин предложен нем. анатомом и гистологом В. Вальдейером (W. Waldeyer) в 1888 г

хромато + греч. soma – тело) – микроскопическое тело в ядре клетки, которое, окрашенное основными красителями, становится заметным во время ее деления. Состоит из двух нитей – хроматид. Содержит в себе гены. Каждый биологический вид имеет постоянное нормальное число хромосом, в соматических клетках человека – их 46, они образуют 23 пары. Человеческие гаметы содержат по 23 хромосомы, по одной из каждой пары. Из них 22 – аутосомы и 1 – половая хромосома. При оплодотворении 23 хромосомы мужских половых клеток объединяются с 23 хромосомами яйцеклетки женщины. Х-хромосомы – женские, Y- хромосомы – мужские. Нормальные женские соматические клетки имеют хромосомный набор –ХХ, нормальные мужские – ХY, нормальная женская яйцеклетка с Х-хромосомой, нормальный мужской сперматозоид – с Х- или Y- хромосомой.

Комплекс молекул ДНК, «упакованных» с помощью белка в своеобразные блоки. Хромосома состоит из двух хромосомных нитей – хроматид, место их соединения называется центромерой. Число хромосом в ядре каждой соматической клетки определенного вида растительного или животного мира в норме всегда строго определенное. Любая соматическая клетка человеческого организма содержит 46 хромосом, из них 44 соматические (аутосомы) и две – половые: в женском организме ХХ, в мужском – XY. Каждая соматическая клетка имеет удвоенный (диплоидный) набор хромосом по сравнению с гаплоидным набором половых клеток (гамет).

Хромосомы (диплоидные) (chromosomes (diploid))

структурные элементы ядра клетки, содержащие нитевидные цепи ДНК (связанной с белками), в которой заключена наследственная информация организма.

Хромосомы

органоиды клеточного ядра, являющиеся носителями генетической информации и определяющие наследственные свойства клеток и организмов.

Что такое хромосомы

Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

Строение хромосом

Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при митозном делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

Гигантские формы хромосом

Политенные хромосомы

Политенные хромосомы — это гигантские скопления объединённых хроматид, возникающие в некоторых типах специализированных клеток. Впервые описаны Эдуар-Жераром Бальбиани (фр. Édouard-Gérard Balbiani) в 1881 году в клетках слюнных желёз мотыля (Chironomus), их исследование было продолжено уже в 1930-х годах Костовым, Пейнтером, Хайнцем (нем. Emil Heintz) и Бауэром (Hans Bauer). Политенные хромосомы обнаружены также в клетках слюнных желёз, кишечника, трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.

Хромосомы типа ламповых щёток

Хромосомы типа ламповых щёток — это гигантская форма хромосом, которая возникает в мейотических женских клетках на стадии диплотены профазы I у некоторых животных, в частности, у некоторых земноводных и птиц. Эти хромосомы являются крайне транскрипционно активными и наблюдаются в растущих ооцитах тогда, когда процессы синтеза РНК, приводящие к образованию желтка, наиболее интенсивны. В настоящее время известно 45 видов животных, в развивающихся ооцитах которых можно наблюдать такие хромосомы. Хромосомы типа ламповых щёток не образуются в ооцитах млекопитающих.

Впервые хромосомы типа ламповых щёток были описаны В. Флеммингом в 1882 году. Название «хромосомы типа ламповых щёток» было предложено немецким эмбриологом И. Рюккертом (J. Rϋckert) в 1892 году.

По длине хромосомы типа ламповых щёток превышают политенные хромосомы. Например, общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

Аберрации

При синдроме Дауна существует три копии хромосомы 21.

Хромосомные аберрации — это нарушения нормального хромосомного содержимого клетки и основная причина генетических состояний у людей, таких как синдром Дауна , хотя большинство аберраций практически не имеют эффекта. Некоторые хромосомные аномалии, такие как транслокации или хромосомные инверсии , не вызывают заболевания у носителей, хотя они могут повысить вероятность вынашивания ребенка с хромосомным заболеванием. Аномальное количество хромосом или наборов хромосом, называемое анеуплоидией , может привести к летальному исходу или вызвать генетические нарушения. Генетическое консультирование предлагается семьям, в которых может быть хромосомная перестройка.

Получение или потеря ДНК хромосом может привести к множеству генетических нарушений . Примеры людей включают:

  • Cri du chat , вызванная удалением части короткого плеча хромосомы 5. «Cri du chat» на французском языке означает «крик кошки»; заболевание было названо так потому, что пораженные дети издают пронзительные крики, похожие на кошачьи. Больные имеют широко расставленные глаза, небольшую голову и челюсть, умеренные или серьезные проблемы с психическим здоровьем и очень короткие.
  • Синдром Дауна , наиболее распространенная трисомия, обычно вызванная дополнительной копией хромосомы 21 ( трисомия 21 ). Характеристики включают снижение мышечного тонуса, более коренастое телосложение, асимметричный череп, раскосые глаза и нарушение развития от легкой до средней степени.
  • Синдром Эдвардса , или трисомия-18, вторая по частоте трисомия. Симптомы включают задержку моторики, нарушение развития и многочисленные врожденные аномалии, вызывающие серьезные проблемы со здоровьем. Девяносто процентов заболевших умирают в младенчестве. У них характерные сжатые руки и пальцы внахлест.
  • Изодицентрический 15 , также называемый idic (15), частичная тетрасомия 15q или инвертированная дупликация 15 (inv dup 15).
  • Синдром Якобсена , который встречается очень редко. Это также называется терминальным нарушением делеции 11q. Пострадавшие имеют нормальный интеллект или легкие отклонения в развитии, с плохими навыками выразительной речи. У большинства из них есть нарушение свертываемости крови, называемое синдромом Пари-Труссо .
  • Синдром Клайнфельтера (XXY). Мужчины с синдромом Клайнфельтера обычно бесплодны, обычно выше и имеют более длинные руки и ноги, чем их сверстники. Мальчики с этим синдромом часто застенчивы и тихи, чаще страдают задержкой речи и дислексией . Без лечения тестостероном у некоторых может развиться гинекомастия в период полового созревания.
  • Синдром Патау , также называемый D-синдромом или трисомией-13. Симптомы несколько схожи с симптомами трисомии-18, но без характерной сложенной руки.
  • Маленькая дополнительная маркерная хромосома . Это означает, что есть лишняя аномальная хромосома. Характеристики зависят от происхождения дополнительного генетического материала. Синдром кошачьего глаза и isodicentric хромосомы 15 синдром (или Idic15) оба вызваны нештатными маркера хромосомой, как синдром Паллистер-Киллиан .
  • Синдром Triple-X (XXX). XXX девушки, как правило, высокие и худые и чаще страдают дислексией.
  • Синдром Тернера (X вместо XX или XY). При синдроме Тернера женские половые признаки присутствуют, но недостаточно развиты. Женщины с синдромом Тернера часто имеют низкий рост, низкий рост волос, аномальные черты глаз и развитие костей, а также вид «вдавленной» груди.
  • Синдром Вольфа – Хиршхорна , который вызван частичной делецией короткого плеча хромосомы 4. Он характеризуется задержкой роста, задержкой развития моторики, чертами лица «греческого шлема» и легкими или серьезными проблемами психического здоровья.
  • XYY-синдром . Мальчики XYY обычно выше своих братьев и сестер. Подобно XXY мальчикам и XXX девочкам, они чаще испытывают трудности в обучении.

Анеуплоидия спермы

Воздействие на мужчин определенного образа жизни, окружающей среды и / или профессиональных опасностей может увеличить риск анеуплоидных сперматозоидов. В частности, риск анеуплоидии увеличивается при курении табака и воздействии бензола, инсектицидов и перфторированных соединений на рабочем месте. Повышенная анеуплоидия часто связана с повышенным повреждением ДНК в сперматозоидах.

47 хромосом. Диагностика

47 хромосом у человека диагностируется на всех этапах, начиная с беременности. Уже в 1 и 2 триместре можно определить признаки отклонения – для этого существует множество анализов, которые для большей достоверности рекомендуется проводить в комплексе. Кроме того, установить диагноз даунизма у рожденного ребенка можно на основе внешнего осмотра или исследований генетического материала.

Как определить у новорожденных

Диагноз можно сделать с помощью осмотра на характерные внешние признаки, не прибегая к генетическому исследованию. Кроме того, больного синдромом проверяют на наличие сопутствующих заболеваний, которые могут быть типичны для детей с даунизмом. Для более точного результата проводят детальное изучение хромосомного набора, которое заключается в окрашивании хромосом и определении лишних фрагментов.

Как определяют синдром Дауна при беременности

Для диагностики возможного даунизма ребенка во время беременности проводят множество исследований, которые покажут риск рождения больного. Вам останется лишь принять решение, делать прерывание или рожать ребенка с заболеванием. К таким исследованиям относятся:

  • Скрининг на генетические аномалии – сочетание биохимического анализа крови и УЗИ.
  • УЗИ. Проводится на 11-13 недели, выявляет толщину воротникового пространства и контуры лица, которые у детей-даунов отличаются от здоровых.
  • Биохимический анализ крови помогает выявить содержание особых веществ в организме ребенка.
  • Амниоцентез – пункция амниотической оболочки для получения образца околоплодных вод.
  • Кордоцентез – получение кордового плода для дальнейшего исследования.
  • Биопсия ворсин хориона – тест на отклонения развития плода.

Кариотипирование одного или обоих супругов

Кариотипирование — это исследование количественного набора хромосом, а также их структурных перестроек (хромосомных аберраций). Перестройки могут быть внутри- и межхромосомными, могут сопровождаться нарушением порядка фрагментов хромосом (делеции, дупликации, инверсии, транслокации). Хромосомные перестройки подразделяют на:

  • Сбалансированные. Иинверсии, реципрокные транслокации не приводят к потере или добавлению генетического материала, поэтому их носители, как правило, фенотипически нормальны.
  • Несбалансированные. Делеции и дупликации меняют дозовое соотношение генов, и, как правило, их носительство сопряжено с существенными отклонениями от нормы.

У здорового человека должно быть 22 пары аутосом и 1 пара половых хромосом (ХХ или ХУ). Для пар, страдающих от бесплодия, кариотипирование назначается скорее из-за перестраховки, его назначение более оправдано при привычном невынашивании, особенно если оно было связано с доказанной анеуплоидией эмбриона/ов.

У пациентов с бесплодием хромосомные перестройки встречаются редко. С привычным невынашиванием сбалансированные перестройки встречаются чаще, но занимают всего лишь 4–5% в структуре причин привычного невынашивания. При этом у таких пациентов всегда есть шанс на рождение здорового ребенка без проведения дорогостоящего обследования и лечения. Без соответствующих исследований и лечения риски повторного невынашивания и рождения ребенка с тяжелыми проявлениями несбалансированной транслокации существуют, но они достаточно низкие.

Так как анализ проводится на коммерческой основе, пара должна понимать, что выявление нарушений кариотипа повлечет за собой рекомендацию делать предимплантационную генетическую диагностику эмбрионов (ПГД) на конкретную хромосомную поломку, а также ПГТ-А для исключения численных хромосомных нарушений у эмбрионов.

Флуоресцентная гибридизация in situ (FISH)

Аббревиатура FISH расшифровывается как fluorescent in situ hybridization – флуоресцентная гибридизация на месте. Это цитогенетический метод, который применяют для выявления и определения положения специфической последовательности ДНК на хромосомах. Для этого используют специальные зонды — нуклеозиды, соединенные с флуорофорами или некоторыми другими метками. Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа.

Метод FISH позволяет изучать небольшие хромосомные перестройки, которые не идентифицируются при стандартном исследовании кариотипа. Однако, имеет один существенный недостаток. Зонды являются специфичными только к одному участку генома и, как следствие, при одном исследовании можно определить наличие или число копий только этого участка (или нескольких при использовании многоцветных зондов). Поэтому важным является правильная клиническая предпосылка, а FISH анализ может только подтвердить иди не подтвердить диагноз.

Альтернативой этому методу является хромосомный микроматричный анализ, который при такой же точности, чувствительности и специфичности определяет количество генетического материала в сотнях тысяч (и даже миллионах) точек генома, что дает возможность диагностики практически всех известных микроделеционных и микродупликационных сииндромов.

Строение хромосом. Строение и функции хромосом

Хромосомы — структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превышает 5 мкм (5-10-4см). Упаковка ДНК приобретает вид петельной структуры, похожей на хромосомы типаламповых щеток амфибий или политенных хромосом насекомых. Петли поддерживаются с помощью белков, которые узнают определенные последовательности нуклеотидов и сближают их. Строение хромосомы лучше всего видно в метафазе митоза.

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки. Каждая хроматида построена из хроматиновых петель. Хроматин не реплицируется. Реплицируется только ДНК.

Рис. 14. Строение и репликация хромосомы

С началом репликации ДНК синтез РНК прекращается. Хромосомы могут находиться в двух состояниях: конденсированном (неактивном) и деконденсированном (активном).

Диплоидный набор хромосом организма называют кариотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом — 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (ХУ), а женщины гомогаметны (XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Хромосомы одной пары называют гомологичными. Гомологичные хромосомы в одинаковых локусах несут аллельные гены.

Этиология хромосомных заболеваний

К этиологическим факторам хромосомных патологий относятся все разновидности хромосомных мутаций. Кроме того, некоторые геномные мутации также способны оказывать подобное действие.

У человека встречаются делеции, дупликации, транслокации и инверсии, то есть все типы мутаций. При делеции и дупликации генетическая информация оказывается в недостаточном и избыточном количестве соответственно. Поскольку современными методами можно выявить отсутствие даже небольшой части генетического материала (на уровне гена), то провести четкую границу между генными и хромосомными заболеваниями практически невозможно.

Транслокации представляют собой обмен генетическим материалом, который происходит между отдельными хромосомами. Иными словами, происходит перемещение участка генетической последовательности на негомологичную хромосому. Среди транслокаций выделяют две важные группы – реципрокные и Робертсоновские.

Транслокации реципрокного характера без потери задействованных участков называются сбалансированными. Они, как и инверсии, не вызывают потери генной информации, поэтому не приводят к паталогическим эффектам. Тем не менее, при дальнейшем участии таких хромосом в процессе кроссинговера и редукции могут образовываться гаметы с несбалансированными наборами, обладающие недостаточным набором генов. Их участие в процессе оплодотворения приводит к тому, что у потомства развиваются те или иные наследственные синдромы.

Для Робертсоновских транслокаций характерно участие двух акроцентрических хромосом. В ходе процесса короткие плечи утрачиваются, а длинные сохраняются. Из 2 исходных хромосом формируется одна цельная, метацентрическая. Несмотря на потерю части генетического материала развития патологий в таком случае обычно не происходит, поскольку функции утраченных участков компенсируются аналогичными генами в остальных 8 акроцентрических хромосомах.

При концевых делециях (то есть при их утрате) может сформироваться кольцевая хромосома. У ее носителя, получившего такой генный материал от одного из родителей, отмечают частичную моносомию по концевым участкам. При разрыве через центромеру может сформироваться изохромосома, имеющая одинаковые по набору генов плечи (у обычной хромосомы они отличаются).

В некоторых случаях может развиваться однородительская дисомия. Она возникает, если при нерасхождении хромосом и оплодотворении возникнет трисомия, а после этого одна из трех хромосом будет удалена. Механизм этого явления в настоящее время не изучен. Однако в результате в хромосомном наборе появится две копии хромосомы одного родителя, в то время как часть генной информации от второго родителя будет утеряна.

Многообразие вариантов искажения хромосомного набора обуславливает различные формы заболеваний.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector