Генетические причины бесплодия (мужского и женского)
Содержание:
- Делеции и дефишенси
- Мутационная изменчивость. Классификация мутиций
- Транслокации
- Инверсии
- Транспозиции
- Кому это нужно?
- Хромосомные аберрации в опухолях солидного типа
- Изменение структуры хромосом.
- После получения молекулярно-генетического профиля опухоли — начинается его анализ
- Вариант 1
- Исследование хромосомных отклонений
- Как это касается других членов семьи
- Что такое изменчивость?
- Изменение числа хромосом.
Делеции и дефишенси
Делецией, или нехваткой, называется потеря некоторого участка хромосомы. Именно делеция была первым примером хромосомной перестройки, обнаруженным в 1917 г. Бриджесом с помощью генетического анализа. Эта делеция фенотипически проявляется в зазубренности края крыла у дрозофилы называется мутацией Notch . Показано, что данная мутация сцеплена с полом, доминанта, в гомозиготном состоянии летальна. Самки, гетерозиготные по Notch , имеют мутантный фенотип, а гомозиготные по этой мутации самки и гемизиготные самцы нежизнеспособны.
Аллель white в присутствии Notch в гомологичной хромосоме ведет себя как доминантный. Другие рецессивные гены, расположенные по соседству с white в Х-хромосоме, также становятся как бы «доминантными» в присутствии Notch . Такая кажущаяся доминантность рецессивных генов называется псевдодоминантностью , поскольку она возникает лишь при утрате некоторого участка гомологичной хромосомой, в результате чего отсутствует аллель, комплементарный рецессивной мутации. Псевдодоминирование служит одним из способов выявления делеций.
Делеции обычно летальны в гомозиготе, что указывает на выпадение каких-либо жизненно важных генов. Очень короткие делеции могут не нарушать жизнеспособности в гомозиготе.
Концевые нехватки, или дефишенси, устанавливают по тем же критериям, однако вследствие их расположения при конъюгации не образуется петля, а одна хромосома оказывается короче другого. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание синдром кошачьего крика , названное так по характеру звуков, издаваемых больными младенцами, обусловлено по дефишенси в 5-й хромосоме. Этот синдром сопровождается умственной отсталостью. Обычно дети с таким синдромом рано умирают.
При отделении фрагмента хромосомы он, как правило, теряется, если не содержит центромеры. Фрагмент, содержащий центромеру, реплицируется и его копии нормально распределяются при клеточных делениях. Фрагменты хромосом не теряются и в случае диффузной центромеры. В этом случае могут возникнуть две телометрические хромосомы.
Большие возможности для выявления делеций, дефишенси и других хромосомных аберраций открывает метод дифференциальной окраски хромосом . Он основан на том, что некоторые красители, например краситель Гимза, дифференциально окрашивают разные участки хромосом. Благодаря этому хромосомы приобретают характерную поперечную исчерченность. Таким методом определяют хромосомные перестройки в метафазных хромосомах.
Мутационная изменчивость. Классификация мутиций
В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом.
На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто.
В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях
Антимутационные механизмы обеспечивают обнаружение, устранение или подавление активности онкогенов. Реализуются антимутационные механизмы при участии онкосупрессоров и систем репарации ДНК.
Человек как объект генетических исследований.
Цитогенетический метод; его значение для диагностики хромосомных синдромов. Правила составления идиограмм здоровых людей. Идиограммы при хромосомных синдромах(аутосомные и гоносомных).
Примеры.
Человек, как объект генетических исследований представляет сложность:
- Нельзя принимать гибридологический метод.
- Медленная смена поколения.
- Малое кол-во детей.
- Большое число хромосомю
Цитигенетический метод (основан на изучеии кариотипа).
Кариотип изучают на метофазных пластинках в культуре лимфаитов крови. Метод позволяет диагностировать хромосомные болезни, появляющиеся в результате геномных и хромосомных мутаций.
Цитологический контроль необходим для диагностики хромо-сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др.
Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.
При цитологических исследованиях интерфазных ядер со-матических клеток можно обнаружить так называемое тельце Барри, или половой хроматин.
Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.
Выявление многих наследствен-ных заболеваний возможно еще до рождения ребенка.
Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании
Биохимический метод изучения генетики человека; его значение для диагностики наследственных болезней обмена веществ. Роль транскрипционных, посттранскрипционных и посттрансляционных модификаций в регуляции клеточного обмена.
Транслокации
Транслокации представляют собой реципрокный обмен участками негомологичных хромосом. Реципрокными транслокациями называется взаимный обмен участками между двумя негомологичными хромосомами (рис. 2). Если изобразить последовательности генов в исходных хромосомах как ABCDEF и GHIJKL, то в транслокационных хромосомах последовательностями генов могут быть, например, ABCDKL и GHIJEF.
У гомозигот по этим транслокациям по сравнению с исходными хромосомами изменяется характер сцепления: гены, в исходных хромосомах не сцепленные, оказываются сцепленными, и наоборот. В приведенном примере гены KL оказываются сцепленными с генами ABCD и перестают быть сцепленными с генами GHIJ.
Рис. 2. − Транслокации
В гетерозиготах по реципрокным транслокациям гены обеих транслоцированных хромосом ведут себя так, как если бы они принадлежали к одной группе сцепления, поскольку лишь гаметы, содержащие родительский набор хромосом, могут образовать жизнеспособные зиготы. Кроме того, у гетерозигот по транслокациям в окрестности точек разрыва хромосом кроссинговеры почти не происходят: взаимное расположение хромосом в виде креста, необходимое для конъюгации гомологичных участков в мейозе, препятствует конъюгации в окрестности точек разрыва хромосом, а это понижает частоту кроссинговера в этих районах.
На цитологических препаратах у гетерозигот по реципрокным транслокациям в профазе мейоза можно наблюдать характерную структуру – крест. Ее появление связано с тем, что гомологичные участки, оказавшиеся в разных хромосомах, притягиваются.
Вместо бивалентов, т.е. пар конъюгирующих хромосом, образуются квадриваленты, состоящие из четырех связанных хромосом, каждая из которых частично гомологична другим хромосомам группы. В диакинезе хиазмы «сползаются» от центромер к концам хромосом, и крест трансформируется в кольцо. Иногда хромосомы кольца переворачиваются и образуют фигуры типа восьмерки.
Гетерозиготы по транслокациям частично стерильны (обладают пониженной плодовитостью), поскольку в процессе мейоза продуцируют дефектные гаметы. У растений пыльцевые зерна, содержащие дупликации или делеции, обычно гибнут. У животных гаметы с делециями или транслокациями могут участвовать в оплодотворении, но образованные из них зиготы обычно погибают. Однако если дуплицированный или утраченный участок хромосомы мал, то потомство может быть и жизнеспособным.
Гетерозиготы по реципрокным транслокациям у животных встречаются редко, но широко распространены у растений. Характерный пример в этом отношении представляют различные виды ослинника – Oenoyhera. Например, у O. lamarkiana из 14 хромосом 12 вовлечены в реципрокные транслокации. Поэтому в мейозе у этого растения наблюдают один бивалент и мультивалент, включающий остальные 12 хромосом. У других видов ослинника число хромосом, образующих мультиваленты, варьирует, что отражает число реципрокных транслокаций.
Подобно инверсиям, транслокации обеспечивают изоляцию новых форм и способствуют дивергенции в пределах вида. Особый тип транслокаций, так называемые Робертсоновские транслокации , или слияния, приводит к изменению числа хромосом. Если две телометрические хромосомы сливаются в области центромеры, то образуется одна метацентрическая хромосома. Этот тип хромосомных перестроек получил свое название по имени исследователя У.Р. Робертсона, выяснившего механизм такого слияния.
Инверсии
Инверсией называют поворот на 180о отдельных участков хромосомы; при этом ни число хромосом, ни число генов в каждой хромосоме не меняются (Айала ). Если последовательность генов в исходной хромосоме обозначить ABCDEF и инверсии подвергся участок BCD, то в новой хромосоме гены будут расположены в последовательности ADCBEF.
В зависимости от расположения концов (границ) перестройки по отношению к центромере инверсии делят на перицентрические, захватывающие центромеру, и включающие ее в инвертированный участок, и парацентрические, не включающие центромеру в инвертированный участок.
Инверсии – это широко распространенный путь эволюционного преобразования генетического материала. Например, человек и шимпанзе отличаются по числу хромосом: у человека 2n = 46, а у шимпанзе 2n = 48.
Инверсия приводит к изменению сцепления генов, иной их линейной последовательности, нежели у исходной формы. Этот эффект можно обнаружить, если инверсия в гомозиготе не летальна. Рецессивная летальность часто сопутствует инверсиям как результат локализации точек разрывов в жизненно важных генах или как следствие эффекта положения.
Другое важное следствие инверсии – подавление кроссинговера, если инверсия находится в гетерозиготе. Это свойство инверсий широко используют при создании сбалансированных линий, гетерозиготных по летальным мутациям и не разрушаемых кроссинговером по нужной хромосоме
У гетерозигот по инверсиям на цитологических препаратах обнаруживают характерные петли – результат конъюгации структурно измененной и нормальной хромосомы. Если на такой петле, т.е. в инвертированном участке, произойдет одиночный кроссинговер, то в случае парацентрической инверсии возникает одна хроматида с двумя центромерами, которые ее порвут при расхождении в анафазе. Образующийся также бесцентромерный фрагмент будет потерян. В результате из четырех гамет полноценными будут только две. Только они способны при оплодотворении дать жизнеспособные зиготы (рис. 7, А). При гетерозиготности по перицентрической инверсии кроссинговер не препятствует нормальному расхождению всех хроматид. Тем не менее полноценными вновь будут только два продукта мейоза из четырех, поскольку две хроматиды несут делеции некоторых генов.
В тоже время двойной кроссинговер у гетерозигот по инверсии может приводить к образованию вполне жизнеспособных гамет (рис. 1, Б).
Хромосома может нести не только одну инверсию, но и две неперекрывающиеся и две, перекрывающиеся полностью или частично. Гетерозиготность по таким сложным перестройкам также идентифицируется цитологически по характеру конъюгации хромосом.
Рис. 1. − Конъюгация хромосом и последствия одиночного (А) и двойного (Б) кроссинговера при гетерозиготности по перицентрической инверсии
Транспозиции
Транспозиции представляют собой перемещение небольших участков генетического материала в пределах одной хромосомы или между разными хромосомами. Транспозиции происходят при участии особых подвижных или мигрирующих генетических элементов .
Впервые мигрирующие генетические элементы были описаны Б. Мак-Клинток в 1947 г. в связи с изучением хромосомных разрывов у кукурузы. Был обнаружен мигрирующий локус Ds (диссоциатор), в котором предпочтительно происходят разрывы хромосом. Сам по себе Ds не вызывает разрывов. Они появляются в этом локусе, если только в геноме присутствует другой мигрирующий элемент – Ac (активатор) . Оба эти элемента могут теряться с частотой нескольких процентов в мейотическом потомстве или менять свою локализацию при метотических делениях. При этом Ds перемещается только в присутствии Ac.
Внедрение Ds в непосредственной близости или внутрь гена С, контролирующего окраску алейрона семян, приводило к инактивации гена С и тем самым гетерозиготные семена С/ с / с оказывались неокрашенными. В присутствии Ас диссоциатор (Ds ) начинал перемещаться – иногда покидал локус С. В результате этого появлялись окрашенные пятна алейрона на неокрашенных семенах.
Только в 80-х годах благодаря успехам генной инженерии удалось выделить и исследовать Ac, Ds и некоторые другие мигрирующие элементы кукурузы. Оказалось, что Ds – это дефектный делетированный вариант Ас . Структура элемента Ас оказалась типичной для мигрирующих элементов, которые к этому времени были изучены прежде всего у бактерий, а также у дрозофилы и дрожжей Sacch.Cerevisiae.
Позднее подвижные генетические элементы были обнаружены у других эукариотических организмов. Мутация white – crimson (wc) у дрозофилы обладает теми же свойствами, что и инсерция IS1 E.coli. Было обнаружено, что она вызывает транспозицию гена white в аутосому. При этом происходят спонтанные делеции соседних генов Х-хромосомы, расположенных слева и справа отwc, аналогичные делециям, вызываемым элементом IS1.
У мух Megaselia scalaris обнаружен генетический элемент, получивший название sexrealizer. Самцы гемизиготны по этому гену, у самок он отсутствует. Располагается такой определитель пола на конце одной из хромосом, превращая ее в половую. С частотой примерно 0,1% образуются спермии, у которых определитель пола переместился с исходной половой хромосомы на другую, которая при этом стала половой. Можно создать линии, в которых половыми являются разные негомологичные хромосомы.
Обнаружение подвижных генетических элементов как у прокариот, так и у эукариот свидетельствует о том, что их присутствие является общим свойством всех организмов. Возникает вопрос, обладают ли эти элементы полезными для организмов функциями. Одна из гипотез состоит в том, что они представляют собой «эгоистическую ДНК», обеспечивающую лишь свое собственное размножение без какой-либо сопутствующей пользы для своего носителя. Дополнительная нагрузка на метаболизм клетки может быть очень мала, и эгоистическая ДНК может сохранятся в таких организмах из-за своей способности реплицироваться быстрее, чем весь остальной геном.
При хромосомных мутациях, также как при генных, происходят перестройки внутри хромосом. Однако первые в отличие от вторых затрагивают существенные части хромосом.
Хромосомные мутации могут быть внутрихромосомными перестройками (изменяется структура одной хромосомы), а также межхромосомными (изменяются две хромосомы). Механизм перестройки может быть различным.
Кому это нужно?
Тем, у кого развилась резистентность опухоли или непереносимость ко всем препаратам из стандартного протокола лечения. Ситуация, когда «все перепробовали — не помогло».
В принципе, нынешние стандарты лечения, особенно европейские и американские протоколы (NCCN), которые мы применяем в «Медицине 24/7», обладают хорошим терапевтическим потенциалом — не зря они считаются «золотым стандартом» лечения в онкологии.
По этим стандартам, сначала назначают препараты 1-й линии терапии — те, что статистически лучше всего помогают при данном диагнозе. Смотрят динамику. Если опухоль не реагирует на лечение или — что хуже — прогрессирует — переходят к препаратам 2-й линии — тем, что по результатам исследований давали чуть менее успешное лечение. Если эти препараты тоже перестают помогать — идем к 3-й линии, и т. д. Многим пациентам длины этой «цепи» хватает до конца жизни.
Но регулярно, к сожалению, врачи оказываются в тупике: в ситуации, когда все линии «протокольной» терапии закончились, а пациент жив и прогрессирует. Коварство раковых опухолей — в их изменчивости. Они очень быстро мутируют дальше, и приспосабливаются к любым условиям, к любым препаратам. Для пациента это означает развитие резистентности — все препараты, прописанные в протоколах лечения, перестали действовать на его опухоль.
Нужно продолжать лечение — а у врача закончились «инструменты», предписанные официальными стандартами лечения. Есть другие препараты, есть право назначить их off-label, вне стандартных линий терапии. Но как узнать, какое лекарство выбрать?
В этом случае молекулярно-генетическое исследование и дает нам понимание, какой препарат будет эффективен против данной опухоли, именно с этим набором мутаций. Назначение такого препарата позволяет выиграть главный для онкопациента ресурс — время.
Хромосомные аберрации в опухолях солидного типа
Солидные опухоли состоят из большого числа недифференцированных клеток, которые склонны к активному делению. Данный тип рака развивается из эпителиальной ткани и характеризуется высокой агрессивностью. Среди примеров вариаций числа копий генов в опухоли солидного строения можно отметить:
- амплификацию гена ERBB2 (он же Her-2/neu). Данный вид мутации имеет большое значение в развитии рака молочной железы и влияет на тактику лечения данного заболевания. Амплификация ERBB2 выявляется примерно у каждой третьей пациентки;
- транслокацию ROS1 и EML4-ALK. В большинстве случаев возникает при немелкоклеточном раке легкого. Выявление данного вида хромосомной аберрации в опухоли оказывает влияние на назначение таргетной терапии, в частности, препарата «Кризотиниб»;
- транслокацию гена RET. Этот ген отвечает за кодирование белка, относящегося к классу рецепторных тирозинкиназ. Транслокации в нем выявляются при эндокринных неоплазиях, раке щитовидной железы, феохромоцитоме, немелкоклеточном раке легкого и других опухолях. Как и в предыдущем случае, диагностика транслокации гена RET позволяет определиться с выбором препарата для таргетной терапии;
- хромосомные аберрации при опухолях головного мозга. Могут выявляться в генах семейства EGFR, VEGFR, PDGFR, C-KIT, BRAF и т.д. Выявление подобных изменений позволяет определить генетический подтип опухоли головного мозга, спрогнозировать клиническое течение, ответ на химиолучевую терапию и определить чувствительность к специфичным лекарственным препаратам.
Выявление описанных выше вариаций числа копий в опухоли солидного типа имеет важное диагностическое значение, поскольку позволяет определиться с тактикой лечения. По этой причине подобные исследования все чаще входят в программу обследования онкологических пациентов
Изменение структуры хромосом.
Изменения в структуре хромосом происходят, когда материал определенной хромосомы поврежден, или изменена
последовательность генов. К структурным изменениям также относятся избыток или утрата хромосомного материала. Это
может происходить несколькими путями, описанными ниже.
Изменения структуры хромосом могут быть очень небольшими, и специалистам в лабораториях бывает сложно их
выявить. Однако даже если структурное изменение найдено, часто бывает сложно предсказать влияние этого изменения
на здоровье конкретного ребенка. Это может разочаровать родителей, которые хотят получить исчерпывающую
информацию о будущем своего ребенка.
Делеции
Термин «хромосомная делеция» означает, что часть хромосомы утрачена или укорочена. Делеция может случиться в
любой хромосоме и на протяжении любой части хромосомы. Делеция может быть любого размера. Если утраченный при
делеции материал (гены) содержал важную информацию для организма, то у ребенка могут возникать трудности в
обучении, задержка развития и другие проблемы со здоровьем. Тяжесть этих проявлений зависит от размеров
утраченной части и локализации внутри хромосомы.
Дупликации
Термин «хромосомная дупликация» означает, что часть хромосомы удвоена, и из-за этого возникает избыток
генетической информации. Этот избыточный материал хромосомы означает, что организм получает слишком большое число
«инструкций», и это может привести к трудностям в обучении, задержке развития и другим проблемам здоровья
ребенка.
Инсерции
Хромосомная инсерция (вставка) означает, что часть материала хромосомы оказалась «не на своем месте» на этой же
или на другой хромосоме. Если общее количество хромосомного материала не изменилось, то такой человек, как
правило, здоров. Однако если такое перемещение приводит к изменению количества хромосомного материала, то у
человека могут возникать трудности в обучении, задержка развития и другие проблемы здоровья ребенка.
Кольцевые хромосомы
Термин «кольцевая хромосома» означает, что концы хромосомы соединились, и хромосома приобрела форму кольца.
Обычно это происходит, когда оба конца одной и той же хромосомы укорочены. Оставшиеся концы хромосомы становятся
«липкими» и соединяются, формируя «кольцо». Последствия формирования кольцевых хромосом для организма зависят от
размера делеций на концах хромосомы.
Инверсии
Хромосомная инверсия означает такое изменение хромосомы, при котором часть хромосомы развернута, и гены в этом
участке расположены в обратном порядке. В большинстве случаев носитель инверсии здоров.
После получения молекулярно-генетического профиля опухоли — начинается его анализ
Специальные программы обрабатывают полученные результаты и составляют рекомендации автоматически. Но затем эти рекомендации обязательно вручную курируются командой экспертов. В анализе участвуют генетики, биоинформатики, врачи-онкологи, иммунологи и химиотерапевты. На этом этапе обязательно происходят уточнения и дополнения.
В зависимости от запроса, такое исследование может занимать от 5 до 15 рабочих дней: одному пациенту нужно просто определить тип опухоли и уточнить рекомендованную терапию — достаточно проверить наличие базового набора из 20 мутаций ДНК по рекомендациям мировых онкологических ассоциаций. А другому, с редким диагнозом или резистентностью к стандартному лечению — нужно составить «молекулярный паспорт» опухоли, а для этого — секвенировать 400 генов.
В итоге, в первой части отчета прописаны все найденные мутации в опухоли пациента, и таргетные препараты, которые будут наиболее эффективны в данном случае. Указана таргетная терапия, одобренная для данного типа опухолей с обнаруженными мутациями, и таргетная терапия, которая одобрена для лечения других типов рака с теми же мутациями. У нас в практике были случаи, когда назначались препараты именно второго порядка, off-label — и хорошо действовали.
Далее сотрудники лаборатории проводят огромную работу по мониторингу научных исследований, которые могут быть значимы в случае с данным пациентом.
Во второй части отчета находится обзор существующих на тот момент исследований с подробными данными о частоте встречаемости данной мутации, о действии разных препаратов и о возможности использовать тот или иной вид таргетной терапии при выявленных мутациях. Это помогает составить хотя бы приблизительный прогноз для пациента.
В третьей части отчета собраны актуальные клинические исследования, в которых пациент может принять участие, чтобы получить экспериментальное лечение. Это самый последний запасной способ, но знать о нем все подробности — полезно для спокойствия пациента.
В итоге, из этого отчета врач получает максимально полный молекулярно-генетический профиль злокачественной опухоли. У него есть информация что именно лечим, какую конкретно поломку в клетке. Есть самое «свежее» понимание, какие препараты сегодня уже одобрены или доступны для использования в рамках клинических исследований.
Отчет получается довольно увесистым — 30 страниц захватывающего чтения
Вариант 1
А1. Скрещивание, при котором родительские формы отличаются по двум парам признаков
1) полигибридное
2) моногибридное
3) тригибридное
4) дигибридное
А2. Соотношение по фенотипу 9 : 3 : 3 : 1 соответствует
1) закону Моргана
2) закону расщепления
3) закону независимого наследования признаков
4) закону единообразия первого поколения
А3. Гены, находящиеся в одной хромосоме, при мейозе попадают в одну гамету, то есть наследуются сцепленно. Это:
1) первый закон Менделя
2) закон Моргана
3) третий закон Менделя
4) закон Вавилова
А4. Сцепление генов не бывает абсолютным, так как нарушается в результате
1) кроссинговера при мейозе
2) взаимодействия неаллельных генов
3) независимого расхождения хромосом при мейозе
4) случайного расхождения хроматид в митозе
А5. Локус — это
1) форма существования гена
2) место гена в хромосоме
3) 1% кроссинговера
4) ген половой хромосомы
А6. Хромосомы, одинаковые у самцов и самок, — это
1) центромеры
2) полирибосомы
3) половые хромосомы
4) аутосомы
А7. Из зиготы разовьется девочка, если в ней окажется хромосомный набор
1) 44 аутосомы + XX
2) 23 аутосомы + X
3) 44 аутосомы + XY
4) 22 аутосомы + Y
А8. Стойкое изменение генотипа, происходящее под действием факторов внешней и внутренней среды, — это
1) фенотип
2) геном
3) мутация
4) норма реакции
А9. Оцените справедливость утверждений.
А. Модификационная изменчивость возникает у организмов под влиянием условий среды и способствует формированию разнообразных фенотипов.В. Модификационная изменчивость является реакцией организма на изменяющиеся условия окружающей среды и приводит к изменению генотипа.
1) верно только А
2) верно только В
3) верны оба утверждения
4) оба утверждения неверны
А10. Совокупность всех наследственных генов клетки или организма — это
1) фенотип
2) геном
3) генотип
4) генофонд
В1. Соотнесите виды мутаций с их особенностями.
ОСОБЕННОСТЬ МУТАЦИИ
А Удвоение участка хромосомы
Б. Замена нуклеотида
В. Выпадение участка хромосомы
Г. Выпадение нуклеотида
Д. Вставка нуклеотида
Е. Поворот участка хромосомы на 180°
ВИД МУТАЦИИ
1. Генная
2. Хромосомная
Запишите выбранные цифры под соответствующими буквами.
С1. Фенилкетонурия (ФКУ) — заболевание, связанное с нарушением обмена веществ (в), и альбинизм (а) наследуются как рецессивные аутосомные несцепленные признаки. В семье мать и отец дигетерозиготны по генам альбинизма и ФКУ. Определите генотипы родителей. Составьте схему скрещивания, генотипы и фенотипы возможного потомства и вероятность рождения детей альбиносов, больных ФКУ.
С2. Мужчина, страдающий дальтонизмом (признак сцеплен с X-хромосомой), женился на женщине с нормальным зрением, но имеющей отца-дальтоника. Определите генотипы мужчины и женщины. Составьте схему решения задачи. Определите генотипы и фенотипы возможного потомства. Определите, какова вероятность рождения сына-дальтоника.
С3. У человека группы крови систем AB0 контролируются тремя аллелями одного гена — J, JA, JB. Они формируют шесть генотипов J J — первая группа, JA J или JA JA — вторая группа , JB J или JB JB — третья группа и JA JB — четвертая. Положительный резус-фактор R доминирует над отрицательным r. У матери четвертая группа крови (JA JB) и положительный резус (гомозигота), а у отца вторая (JA J) и отрицательный резус. Определите генотип родителей, возможные группы крови, резус-фактор и генотип потомков. Какова вероятность наследования ребенком группы крови матери и положительного резус-фактора?
Исследование хромосомных отклонений
Как это касается других членов семьи
Если у одного из членов семьи обнаружена хромосомная перестройка, возможно, Вы захотите обсудить этот вопрос с
другими членами семьи. Это даст возможность другим родственникам, при желании, пройти обследование (анализ
хромосом в клетках крови) для определения носительства хромосомной перестройки
Это может быть особенно важно для
родственников, уже имеющих детей или планирующих беременность. Если они не являются носителями хромосомной
перестройки, они не могут передать ее своим детям
Если же они являются носителями, то им могут предложить пройти
обследование во время беременности для анализа хромосом плода.
Некоторым людям сложно обсуждать проблемы, связанные с хромосомной перестройкой, с членами семьи. Они могут
бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и
теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных
семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.
Что такое изменчивость?
Изменчивость — свойство живых организмов: потомки приобретают признаки, отличающие их от предков. Этот термин достаточно общий, поэтому поделим его на типы и охарактеризуем каждый из них. Это позволит лучше разобраться, какой может быть изменчивость в ЕГЭ по биологии
Обратите на эту тему внимание: профессии, связанные с генетикой, явно будут востребованы в ближайшие годы!
Не знаете, какой вуз выбрать? Что это такое? Все просто: вы расскажете о себе и о своих интересах
А специалист посоветует, на какие специальности обратить внимание, в какой вуз поступать, какие ЕГЭ сдавать. Так вы сэкономите время на подготовку и сможете выбрать образование, которое точно окажется для вас интересным и полезным!
Ненаследственная изменчивость
Признаки не передаются потомкам по наследству. Подумайте: если хорошо кормить домашнюю кошку, родятся ли ее котята самыми упитанными? Конечно, нет.
У этой разновидности изменчивости есть еще несколько синонимичных названий. Например, фенотипическая, так как изменения затрагивают только фенотип (внешнее проявление признака). Еще одно название — групповая, она проявляется сходно у всех особей группы, допустим, целая группа людей поехала в отпуск к морю, и все члены этой группы долгое время провели под солнечными лучами. У каждого из них кожа изменит цвет: кто-то обгорит, кто-то сразу загорит, но изменит у всех. Так же эту изменчивость называют модификационной, а все изменения, не затрагивающие генотип — модификациями.
Еще одно название предложил Чарльз Дарвин, который не знал почти ничего о наследовании генов. Он ввел термин «определенная изменчивость». Такие изменения можно предугадать. Безусловно, если мы будем лежать на диване дни напролет, то процент жировой ткани в организме увеличится, а если каждый день будем выходить на пробежку, увеличится процент мышечной ткани.
Наследственная изменчивость
Второй тип изменчивости является абсолютной противоположностью модификационной. Она называется наследственной, так как передается от предков потомкам. По аналогии с первым типом, ее еще называют генотипической: она затрагивает генотип. Такая изменчивость проявляется у каждого организма по-своему, индивидуально, поэтому есть термин «индивидуальная изменчивость». Например, в одной семье, у одних родителей могут родиться два сына: один дальтоник, а второй с нормальным цветовым зрением. Ну и разве мог Дарвин остаться в стороне? Для этой изменчивости он предложил название — неопределенная, ведь нельзя однозначно предсказать у какого организма какие изменения проявятся.
Но на этом разновидности изменчивости не заканчиваются. Наследственную изменчивость можно разделить еще на два типа.
1. Комбинативная изменчивость
Представьте себе калейдоскоп, внутри которого несколько цветных стеклышек. Когда вы смотрите в него, то каждый раз видите разные узоры, но новые стеклышки внутрь не досыпаются. Вот и такая изменчивость возникает при сочетании уже имеющихся генов. В случае, если у темноволосых родителей рождается светловолосый ребенок, перед нами пример комбинативной изменчивости.
Перечислим основные причины, в результате которых происходят комбинации. Первая причина — это кроссинговер (обмен участками гомологичных хромосом), происходящий в профазе первого деления мейоза. А вторая — это случайный подбор родительских пар. Нельзя точно предсказать какой из самцов павлина победит в половом отборе, чей хвост в этом году будет самым красивым. Третья причина — это случайная встреча гамет, никто не знает, какой именно сперматозоид оплодотворит каждую из яйцеклеток и оплодотворит ли вообще. Четвертая причина – это расхождение хромосом в мейозе.
Мутационная изменчивость
Второй тип наследственной изменчивость – это мутационная изменчивость. Она бывает вызвана воздействием на организм мутагенов, а в основе ее лежит изменение структуры ДНК или хромосом.
Мутационная изменчивость тоже делится на
несколько типов. Она бывает генной, хромосомной и геномной. Генные мутации связаны с изменением
нуклеотидов в гене (выпадение, удвоение, замена и т.д.). Хромосомные мутации связаны с изменением в структуре в хромосом
(утрата плеча, выпадение участка, поворот участка на 180 градусов, удвоение
участков и т.д. ). Геномные мутации
связаны с изменением числа хромосом.
Только что мы повторили всю теорию, затрагивающую изменчивость в ЕГЭ по обществознанию! Теперь я предлагаю перейти к практике и разобрать задания, аналогичные тем, которые могут встретиться на ЕГЭ.
Изменение числа хромосом.
В норме в каждой клетке человека содержится 46 хромосом. Однако, иногда ребенок рождается либо с большим, либо
с меньшим числом хромосом. В таком случае возникает, соответственно, либо избыточное, либо недостаточное число
генов, необходимых для регуляции роста и развития организма.
Один из наиболее распространенных примеров генетического заболевания, вызванного избыточным числом хромосом,
является синдром Дауна. В клетках людей с этим заболеванием находится 47 хромосом вместо обычных 46-ти, так как
присутствует три копии 21-ой хромосомы вместо двух.